3.10 \(\int \frac {1}{1+a^2+2 a x^2+x^4} \, dx\)

Optimal. Leaf size=299 \[ -\frac {\log \left (-\sqrt {2} \sqrt {\sqrt {a^2+1}-a} x+\sqrt {a^2+1}+x^2\right )}{4 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}-a}}+\frac {\log \left (\sqrt {2} \sqrt {\sqrt {a^2+1}-a} x+\sqrt {a^2+1}+x^2\right )}{4 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}-a}}-\frac {\tan ^{-1}\left (\frac {\sqrt {\sqrt {a^2+1}-a}-\sqrt {2} x}{\sqrt {\sqrt {a^2+1}+a}}\right )}{2 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}+a}}+\frac {\tan ^{-1}\left (\frac {\sqrt {\sqrt {a^2+1}-a}+\sqrt {2} x}{\sqrt {\sqrt {a^2+1}+a}}\right )}{2 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}+a}} \]

[Out]

-1/8*ln(x^2+(a^2+1)^(1/2)-x*2^(1/2)*(-a+(a^2+1)^(1/2))^(1/2))*2^(1/2)/(a^2+1)^(1/2)/(-a+(a^2+1)^(1/2))^(1/2)+1
/8*ln(x^2+(a^2+1)^(1/2)+x*2^(1/2)*(-a+(a^2+1)^(1/2))^(1/2))*2^(1/2)/(a^2+1)^(1/2)/(-a+(a^2+1)^(1/2))^(1/2)-1/4
*arctan((-x*2^(1/2)+(-a+(a^2+1)^(1/2))^(1/2))/(a+(a^2+1)^(1/2))^(1/2))*2^(1/2)/(a^2+1)^(1/2)/(a+(a^2+1)^(1/2))
^(1/2)+1/4*arctan((x*2^(1/2)+(-a+(a^2+1)^(1/2))^(1/2))/(a+(a^2+1)^(1/2))^(1/2))*2^(1/2)/(a^2+1)^(1/2)/(a+(a^2+
1)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 299, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {1094, 634, 618, 204, 628} \[ -\frac {\log \left (-\sqrt {2} \sqrt {\sqrt {a^2+1}-a} x+\sqrt {a^2+1}+x^2\right )}{4 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}-a}}+\frac {\log \left (\sqrt {2} \sqrt {\sqrt {a^2+1}-a} x+\sqrt {a^2+1}+x^2\right )}{4 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}-a}}-\frac {\tan ^{-1}\left (\frac {\sqrt {\sqrt {a^2+1}-a}-\sqrt {2} x}{\sqrt {\sqrt {a^2+1}+a}}\right )}{2 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}+a}}+\frac {\tan ^{-1}\left (\frac {\sqrt {\sqrt {a^2+1}-a}+\sqrt {2} x}{\sqrt {\sqrt {a^2+1}+a}}\right )}{2 \sqrt {2} \sqrt {a^2+1} \sqrt {\sqrt {a^2+1}+a}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + a^2 + 2*a*x^2 + x^4)^(-1),x]

[Out]

-ArcTan[(Sqrt[-a + Sqrt[1 + a^2]] - Sqrt[2]*x)/Sqrt[a + Sqrt[1 + a^2]]]/(2*Sqrt[2]*Sqrt[1 + a^2]*Sqrt[a + Sqrt
[1 + a^2]]) + ArcTan[(Sqrt[-a + Sqrt[1 + a^2]] + Sqrt[2]*x)/Sqrt[a + Sqrt[1 + a^2]]]/(2*Sqrt[2]*Sqrt[1 + a^2]*
Sqrt[a + Sqrt[1 + a^2]]) - Log[Sqrt[1 + a^2] - Sqrt[2]*Sqrt[-a + Sqrt[1 + a^2]]*x + x^2]/(4*Sqrt[2]*Sqrt[1 + a
^2]*Sqrt[-a + Sqrt[1 + a^2]]) + Log[Sqrt[1 + a^2] + Sqrt[2]*Sqrt[-a + Sqrt[1 + a^2]]*x + x^2]/(4*Sqrt[2]*Sqrt[
1 + a^2]*Sqrt[-a + Sqrt[1 + a^2]])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {1}{1+a^2+2 a x^2+x^4} \, dx &=\frac {\int \frac {\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}-x}{\sqrt {1+a^2}-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{2 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}+\frac {\int \frac {\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}+x}{\sqrt {1+a^2}+\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{2 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}\\ &=\frac {\int \frac {1}{\sqrt {1+a^2}-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{4 \sqrt {1+a^2}}+\frac {\int \frac {1}{\sqrt {1+a^2}+\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{4 \sqrt {1+a^2}}-\frac {\int \frac {-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}+2 x}{\sqrt {1+a^2}-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}+\frac {\int \frac {\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}+2 x}{\sqrt {1+a^2}+\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2} \, dx}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}\\ &=-\frac {\log \left (\sqrt {1+a^2}-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2\right )}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}+\frac {\log \left (\sqrt {1+a^2}+\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2\right )}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-2 \left (a+\sqrt {1+a^2}\right )-x^2} \, dx,x,-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}+2 x\right )}{2 \sqrt {1+a^2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-2 \left (a+\sqrt {1+a^2}\right )-x^2} \, dx,x,\sqrt {2} \sqrt {-a+\sqrt {1+a^2}}+2 x\right )}{2 \sqrt {1+a^2}}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {-a+\sqrt {1+a^2}}-\sqrt {2} x}{\sqrt {a+\sqrt {1+a^2}}}\right )}{2 \sqrt {2} \sqrt {1+a^2} \sqrt {a+\sqrt {1+a^2}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {-a+\sqrt {1+a^2}}+\sqrt {2} x}{\sqrt {a+\sqrt {1+a^2}}}\right )}{2 \sqrt {2} \sqrt {1+a^2} \sqrt {a+\sqrt {1+a^2}}}-\frac {\log \left (\sqrt {1+a^2}-\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2\right )}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}+\frac {\log \left (\sqrt {1+a^2}+\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} x+x^2\right )}{4 \sqrt {2} \sqrt {1+a^2} \sqrt {-a+\sqrt {1+a^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 52, normalized size = 0.17 \[ -\frac {1}{2} i \left (\frac {\tan ^{-1}\left (\frac {x}{\sqrt {a-i}}\right )}{\sqrt {a-i}}-\frac {\tan ^{-1}\left (\frac {x}{\sqrt {a+i}}\right )}{\sqrt {a+i}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + a^2 + 2*a*x^2 + x^4)^(-1),x]

[Out]

(-1/2*I)*(ArcTan[x/Sqrt[-I + a]]/Sqrt[-I + a] - ArcTan[x/Sqrt[I + a]]/Sqrt[I + a])

________________________________________________________________________________________

fricas [B]  time = 0.94, size = 613, normalized size = 2.05 \[ \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} {\left (\frac {a}{\sqrt {a^{2} + 1}} + 1\right )} \log \left (x^{2} + \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {1}{4}}} + \sqrt {a^{2} + 1}\right )}{8 \, {\left (a^{2} + 1\right )}^{\frac {1}{4}}} - \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} {\left (\frac {a}{\sqrt {a^{2} + 1}} + 1\right )} \log \left (x^{2} - \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {1}{4}}} + \sqrt {a^{2} + 1}\right )}{8 \, {\left (a^{2} + 1\right )}^{\frac {1}{4}}} - \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} {\left (a^{2} + 1\right )}^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {a^{4} + 2 \, a^{2} + 1} \sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {5}{4}}} + \frac {a^{3} + a}{\sqrt {a^{4} + 2 \, a^{2} + 1}} + \frac {\sqrt {a^{4} + 2 \, a^{2} + 1} \sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} \sqrt {x^{2} + \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {1}{4}}} + \sqrt {a^{2} + 1}}}{{\left (a^{2} + 1\right )}^{\frac {5}{4}}} - \frac {\sqrt {a^{4} + 2 \, a^{2} + 1}}{\sqrt {a^{2} + 1}}\right )}{2 \, \sqrt {a^{4} + 2 \, a^{2} + 1}} - \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} {\left (a^{2} + 1\right )}^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {a^{4} + 2 \, a^{2} + 1} \sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {5}{4}}} - \frac {a^{3} + a}{\sqrt {a^{4} + 2 \, a^{2} + 1}} + \frac {\sqrt {a^{4} + 2 \, a^{2} + 1} \sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} \sqrt {x^{2} - \frac {\sqrt {2 \, a^{2} - \frac {2 \, {\left (a^{3} + a\right )}}{\sqrt {a^{2} + 1}} + 2} x}{{\left (a^{2} + 1\right )}^{\frac {1}{4}}} + \sqrt {a^{2} + 1}}}{{\left (a^{2} + 1\right )}^{\frac {5}{4}}} + \frac {\sqrt {a^{4} + 2 \, a^{2} + 1}}{\sqrt {a^{2} + 1}}\right )}{2 \, \sqrt {a^{4} + 2 \, a^{2} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+2*a*x^2+a^2+1),x, algorithm="fricas")

[Out]

1/8*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*(a/sqrt(a^2 + 1) + 1)*log(x^2 + sqrt(2*a^2 - 2*(a^3 + a)/sqrt(
a^2 + 1) + 2)*x/(a^2 + 1)^(1/4) + sqrt(a^2 + 1))/(a^2 + 1)^(1/4) - 1/8*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1)
+ 2)*(a/sqrt(a^2 + 1) + 1)*log(x^2 - sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*x/(a^2 + 1)^(1/4) + sqrt(a^2
+ 1))/(a^2 + 1)^(1/4) - 1/2*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*(a^2 + 1)^(1/4)*arctan(-sqrt(a^4 + 2*a
^2 + 1)*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*x/(a^2 + 1)^(5/4) + (a^3 + a)/sqrt(a^4 + 2*a^2 + 1) + sqrt
(a^4 + 2*a^2 + 1)*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*sqrt(x^2 + sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1
) + 2)*x/(a^2 + 1)^(1/4) + sqrt(a^2 + 1))/(a^2 + 1)^(5/4) - sqrt(a^4 + 2*a^2 + 1)/sqrt(a^2 + 1))/sqrt(a^4 + 2*
a^2 + 1) - 1/2*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*(a^2 + 1)^(1/4)*arctan(-sqrt(a^4 + 2*a^2 + 1)*sqrt(
2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*x/(a^2 + 1)^(5/4) - (a^3 + a)/sqrt(a^4 + 2*a^2 + 1) + sqrt(a^4 + 2*a^2
+ 1)*sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*sqrt(x^2 - sqrt(2*a^2 - 2*(a^3 + a)/sqrt(a^2 + 1) + 2)*x/(a^2
 + 1)^(1/4) + sqrt(a^2 + 1))/(a^2 + 1)^(5/4) + sqrt(a^4 + 2*a^2 + 1)/sqrt(a^2 + 1))/sqrt(a^4 + 2*a^2 + 1)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+2*a*x^2+a^2+1),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.11, size = 1073, normalized size = 3.59 \[ \frac {a^{4} \arctan \left (\frac {2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}-\frac {a^{4} \arctan \left (\frac {-2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a^{3} \ln \left (x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x +\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )^{\frac {3}{2}}}-\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a^{3} \ln \left (-x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x -\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )^{\frac {3}{2}}}-\frac {a^{2} \arctan \left (\frac {2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \sqrt {a^{2}+1}\, \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {3 a^{2} \arctan \left (\frac {2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {a^{2} \arctan \left (\frac {-2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \sqrt {a^{2}+1}\, \sqrt {2 a +2 \sqrt {a^{2}+1}}}-\frac {3 a^{2} \arctan \left (\frac {-2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a^{2} \ln \left (x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x +\sqrt {a^{2}+1}\right )}{8 a^{2}+8}-\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a^{2} \ln \left (-x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x -\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )}+\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a \ln \left (x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x +\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )^{\frac {3}{2}}}-\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, a \ln \left (-x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x -\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )^{\frac {3}{2}}}-\frac {\arctan \left (\frac {2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \sqrt {a^{2}+1}\, \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {\arctan \left (\frac {2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{\left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {\arctan \left (\frac {-2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{2 \sqrt {a^{2}+1}\, \sqrt {2 a +2 \sqrt {a^{2}+1}}}-\frac {\arctan \left (\frac {-2 x +\sqrt {-2 a +2 \sqrt {a^{2}+1}}}{\sqrt {2 a +2 \sqrt {a^{2}+1}}}\right )}{\left (a^{2}+1\right )^{\frac {3}{2}} \sqrt {2 a +2 \sqrt {a^{2}+1}}}+\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, \ln \left (x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x +\sqrt {a^{2}+1}\right )}{8 a^{2}+8}-\frac {\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, \ln \left (-x^{2}+\sqrt {-2 a +2 \sqrt {a^{2}+1}}\, x -\sqrt {a^{2}+1}\right )}{8 \left (a^{2}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4+2*a*x^2+a^2+1),x)

[Out]

-1/8/(a^2+1)*ln(x*(2*(a^2+1)^(1/2)-2*a)^(1/2)-x^2-(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a^2-1/8/(a^2+1)^(
3/2)*ln(x*(2*(a^2+1)^(1/2)-2*a)^(1/2)-x^2-(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a^3-1/8/(a^2+1)*ln(x*(2*(
a^2+1)^(1/2)-2*a)^(1/2)-x^2-(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)-1/8/(a^2+1)^(3/2)*ln(x*(2*(a^2+1)^(1/2)
-2*a)^(1/2)-x^2-(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a+1/2/(a^2+1)^(1/2)/(2*(a^2+1)^(1/2)+2*a)^(1/2)*arc
tan(((2*(a^2+1)^(1/2)-2*a)^(1/2)-2*x)/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^2-1/2/(a^2+1)^(3/2)/(2*(a^2+1)^(1/2)+2*a)
^(1/2)*arctan(((2*(a^2+1)^(1/2)-2*a)^(1/2)-2*x)/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^4+1/2/(a^2+1)^(1/2)/(2*(a^2+1)^
(1/2)+2*a)^(1/2)*arctan(((2*(a^2+1)^(1/2)-2*a)^(1/2)-2*x)/(2*(a^2+1)^(1/2)+2*a)^(1/2))-3/2/(a^2+1)^(3/2)/(2*(a
^2+1)^(1/2)+2*a)^(1/2)*arctan(((2*(a^2+1)^(1/2)-2*a)^(1/2)-2*x)/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^2-1/(a^2+1)^(3/
2)/(2*(a^2+1)^(1/2)+2*a)^(1/2)*arctan(((2*(a^2+1)^(1/2)-2*a)^(1/2)-2*x)/(2*(a^2+1)^(1/2)+2*a)^(1/2))+1/8/(a^2+
1)*ln(x^2+x*(2*(a^2+1)^(1/2)-2*a)^(1/2)+(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a^2+1/8/(a^2+1)^(3/2)*ln(x^
2+x*(2*(a^2+1)^(1/2)-2*a)^(1/2)+(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a^3+1/8/(a^2+1)*ln(x^2+x*(2*(a^2+1)
^(1/2)-2*a)^(1/2)+(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)+1/8/(a^2+1)^(3/2)*ln(x^2+x*(2*(a^2+1)^(1/2)-2*a)^
(1/2)+(a^2+1)^(1/2))*(2*(a^2+1)^(1/2)-2*a)^(1/2)*a-1/2/(a^2+1)^(1/2)/(2*(a^2+1)^(1/2)+2*a)^(1/2)*arctan((2*x+(
2*(a^2+1)^(1/2)-2*a)^(1/2))/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^2+1/2/(a^2+1)^(3/2)/(2*(a^2+1)^(1/2)+2*a)^(1/2)*arc
tan((2*x+(2*(a^2+1)^(1/2)-2*a)^(1/2))/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^4-1/2/(a^2+1)^(1/2)/(2*(a^2+1)^(1/2)+2*a)
^(1/2)*arctan((2*x+(2*(a^2+1)^(1/2)-2*a)^(1/2))/(2*(a^2+1)^(1/2)+2*a)^(1/2))+3/2/(a^2+1)^(3/2)/(2*(a^2+1)^(1/2
)+2*a)^(1/2)*arctan((2*x+(2*(a^2+1)^(1/2)-2*a)^(1/2))/(2*(a^2+1)^(1/2)+2*a)^(1/2))*a^2+1/(a^2+1)^(3/2)/(2*(a^2
+1)^(1/2)+2*a)^(1/2)*arctan((2*x+(2*(a^2+1)^(1/2)-2*a)^(1/2))/(2*(a^2+1)^(1/2)+2*a)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{4} + 2 \, a x^{2} + a^{2} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+2*a*x^2+a^2+1),x, algorithm="maxima")

[Out]

integrate(1/(x^4 + 2*a*x^2 + a^2 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 4.36, size = 469, normalized size = 1.57 \[ -\frac {\mathrm {atanh}\left (-\frac {2\,x\,\sqrt {\frac {a}{a^2+1}+\frac {1{}\mathrm {i}}{a^2+1}}}{\frac {2\,a}{a^2+1}+\frac {2{}\mathrm {i}}{a^2+1}}+\frac {a\,x\,\sqrt {\frac {a}{a^2+1}+\frac {1{}\mathrm {i}}{a^2+1}}\,2{}\mathrm {i}}{\frac {2\,a}{a^2+1}+\frac {2\,a^3}{a^2+1}+\frac {2{}\mathrm {i}}{a^2+1}+\frac {a^2\,2{}\mathrm {i}}{a^2+1}}+\frac {2\,a^2\,x\,\sqrt {\frac {a}{a^2+1}+\frac {1{}\mathrm {i}}{a^2+1}}}{\frac {2\,a}{a^2+1}+\frac {2\,a^3}{a^2+1}+\frac {2{}\mathrm {i}}{a^2+1}+\frac {a^2\,2{}\mathrm {i}}{a^2+1}}\right )\,\sqrt {\frac {a+1{}\mathrm {i}}{a^2+1}}}{2}+2\,\mathrm {atanh}\left (\frac {8\,x\,\sqrt {\frac {a}{16\,a^2+16}-\frac {1{}\mathrm {i}}{16\,a^2+16}}}{\frac {32\,a}{16\,a^2+16}-\frac {32{}\mathrm {i}}{16\,a^2+16}}+\frac {a\,x\,\sqrt {\frac {a}{16\,a^2+16}-\frac {1{}\mathrm {i}}{16\,a^2+16}}\,128{}\mathrm {i}}{\frac {512\,a}{16\,a^2+16}+\frac {512\,a^3}{16\,a^2+16}-\frac {512{}\mathrm {i}}{16\,a^2+16}-\frac {a^2\,512{}\mathrm {i}}{16\,a^2+16}}-\frac {128\,a^2\,x\,\sqrt {\frac {a}{16\,a^2+16}-\frac {1{}\mathrm {i}}{16\,a^2+16}}}{\frac {512\,a}{16\,a^2+16}+\frac {512\,a^3}{16\,a^2+16}-\frac {512{}\mathrm {i}}{16\,a^2+16}-\frac {a^2\,512{}\mathrm {i}}{16\,a^2+16}}\right )\,\sqrt {\frac {a-\mathrm {i}}{16\,a^2+16}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*a*x^2 + a^2 + x^4 + 1),x)

[Out]

2*atanh((8*x*(a/(16*a^2 + 16) - 1i/(16*a^2 + 16))^(1/2))/((32*a)/(16*a^2 + 16) - 32i/(16*a^2 + 16)) + (a*x*(a/
(16*a^2 + 16) - 1i/(16*a^2 + 16))^(1/2)*128i)/((512*a)/(16*a^2 + 16) - 512i/(16*a^2 + 16) - (a^2*512i)/(16*a^2
 + 16) + (512*a^3)/(16*a^2 + 16)) - (128*a^2*x*(a/(16*a^2 + 16) - 1i/(16*a^2 + 16))^(1/2))/((512*a)/(16*a^2 +
16) - 512i/(16*a^2 + 16) - (a^2*512i)/(16*a^2 + 16) + (512*a^3)/(16*a^2 + 16)))*((a - 1i)/(16*a^2 + 16))^(1/2)
 - (atanh((a*x*(a/(a^2 + 1) + 1i/(a^2 + 1))^(1/2)*2i)/((2*a)/(a^2 + 1) + 2i/(a^2 + 1) + (a^2*2i)/(a^2 + 1) + (
2*a^3)/(a^2 + 1)) - (2*x*(a/(a^2 + 1) + 1i/(a^2 + 1))^(1/2))/((2*a)/(a^2 + 1) + 2i/(a^2 + 1)) + (2*a^2*x*(a/(a
^2 + 1) + 1i/(a^2 + 1))^(1/2))/((2*a)/(a^2 + 1) + 2i/(a^2 + 1) + (a^2*2i)/(a^2 + 1) + (2*a^3)/(a^2 + 1)))*((a
+ 1i)/(a^2 + 1))^(1/2))/2

________________________________________________________________________________________

sympy [A]  time = 0.58, size = 48, normalized size = 0.16 \[ \operatorname {RootSum} {\left (t^{4} \left (256 a^{2} + 256\right ) - 32 t^{2} a + 1, \left (t \mapsto t \log {\left (64 t^{3} a^{3} + 64 t^{3} a - 4 t a^{2} + 4 t + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**4+2*a*x**2+a**2+1),x)

[Out]

RootSum(_t**4*(256*a**2 + 256) - 32*_t**2*a + 1, Lambda(_t, _t*log(64*_t**3*a**3 + 64*_t**3*a - 4*_t*a**2 + 4*
_t + x)))

________________________________________________________________________________________